

slide 1 of 33

Data storage on Triton:
an introduction

● Motivation
● How storage is organized in Triton
● How to optimize IO
● Do's and Don'ts
● Exercises

slide 2 of 33

Data storage: Motivation

● Program speed isn’t just about processor
speed: you have to get data to the processor

● Dealing with IO properly prevents performance
bottlenecks (and this is a major factor in computer design)

● Input/output is a shared resource: one user can
cause problems to other users

● Your work will be more efficient if you organize
your work to suit your data

slide 5 of 33

https://en.wikipedia.org/wiki/Memory_hierarchy

N
et

w
or

k
st

or
a

ge

slide 6 of 33

Storage considerations

You have all of these things to think about:
● Network (shared) vs local (dedicated)
● Shared (with a group) vs personal (only you can access)
● Sequential access vs random access (different performances)

● Few large files vs many small files
● Parallel vs single access
● Backed up vs not
● Rotating hard disk vs solid state drive
● You do need to put your own effort into using storage properly

● Using proper file formats and applications
● Move data to best storage yourself (during calculations)

slide 7 of 33

How storage is organized in
Triton

slide 8 of 33

Data stored in files

What is a file?
● File = metadata + contents (block data)
● Accessing contents: cat a.txt
● Showing some metadata: ls -l a.txt

● Full metadata: stat a.txt, lsattr, getfattr

slide 9 of 33

Files stored in /scratch

In /scratch, metadata and block data are
separated:
● Metadata query answered by metadata server
● Block data query, object storage server answers

slide 10 of 33

File system performance metrics

● Stream I/O and random IOPS

● Stream measures the speed of reading large
sequential data from system

● IOPS measure random small reads to the system –
number of metadata/block data accesses

● To measure your own application, profiling or
internal timers needed

● Rough estimate can be aquired from /proc/<pid>/io
or by using strace

slide 11 of 33

Triton network storage
User's Home folder (NFS filesystem)

● /home/$username/ -directory

● Shared for every computational node
● Meant for scripts etc. Not highly parallel
● Nightly backup, 1GB quota (small)

Work/Scratch (Lustre filesystem)

● Personal: /scratch/$department/work/$username/

● Group: /scratch/$department/$project/
● Shared for every computational node
● Meant for fast, highly parallel input/output data but inefficient for small random access
● Quota varies per project, 2 PB available. Default 200GB/person.
● No backups (but a reliable system with RAID)
● Has dedicated tools for fast access, e.g. optimized find function 'lfs find'.

https://wiki.aalto.fi/display/Triton/Data+Storage
https://wiki.aalto.fi/display/Triton/Data+storage+on+the+Lustre
+file+system

slide 12 of 33

Triton local storage
Storage local to compute node

● /tmp -directory

● Dedicated: Best for calculation time storage
● Copy relevant data after computation, will be deleted after job completes
● $TMPDIR variable defines a temporary directory for the job

Ramdisk for fast IO operations

● Special location, similar to /tmp

● $XDG_RUNTIME_DIR -directory (20GB per user)

● Extremely fast (it’s just RAM) but small and temporary
● Use case: job spends most of its time doing file operations on millions of small

files.

slide 13 of 33

Triton special storage
Solid state drive servers

● Currently special server – not user accessible
● Good for random access
● Currently planning future use – if you have use case, let us know

● Department filesystems (/m/$dept/{project,archive})

● Not actually part of Triton – provided by Departments/Aalto
● Not highly parallel
● Not mounted on all the nodes
● Mounted for convenient data transfer only

– You must move computation data to scratch

https://wiki.aalto.fi/display/Triton/Data+Storage
https://wiki.aalto.fi/display/Triton/Data+storage+on+the+Lustre+file+system
https://wiki.aalto.fi/display/Triton/Data+storage+on+the+Lustre+file+system

slide 14 of 33

File systems: Summary

Location Type Usage Size/quota

/home NFS Home dir 1 Gb

/tmp local Local scratch ~800Gb (varies)

$WRKDIR Lustre Personal work 200GB default

/scratch/$dept/$project/ Lustre Shared work As needed

$XDG_RUNTIME_DIR Ramdisk Local scratch 20GB

slide 15 of 33

Quotas

● Quotas limit how much space you can use (and how many
files)

● Check with “quota” command
● Home: 1GB
● Lustre

● Work: 200GB and increased as needed, project quotas as needed
● Quotas and advisory, and are always increased as necessary as

long as you manage data well
● “‘Disk quota exceeded’ error but I have plenty of space”: a common

problem. Caused by limitation of Lustre, see the wiki page.

● https://wiki.aalto.fi/display/Triton/Triton+Quotas

slide 18 of 33

How to optimize IO

slide 19 of 33

File system performance metrics

● Stream I/O and random IOPS

● Stream measures the speed of reading large
sequential data from system

● IOPS measure random small reads to the system –
number of metadata/block data accesses

● To measure your own application, profiling or
internal timers needed

● Rough estimate can be aquired from /proc/<pid>/io
or by using strace

https://wiki.aalto.fi/display/Triton/Triton+Quotas

slide 20 of 33

Performance metric examples
● Total numbers

● Per jobs, with 200 concurrent jobs using storage...
Device IOPS Stream

Sata disk (7.2k) 50-100 50 MB/s

SSD disk N/a N/a

Triton NFS 1.5 1.5 MB/s

Triton Lustre 500 150 MB/s

● DON'T run job jobs from HOME! (NFS)

Device IOPS Stream

Sata disk (7.2k) 50-100 50 MB/s

SSD disk 3000-10 000 500 MB/s

Ramdisk 40 000 5000 MB/s

Triton NFS 300 300 MB/s

Triton Lustre 100 000 30000 MB/s

slide 21 of 33

How to optimize IO/data?

● Know how your program does its data handling,
know which file system your program utilizes for its IO

● Measure your program with profilers e.g.
strace c e trace=file <program>

● Minimize the number of unnecessary file calls e.g.
log output timestep

● Load data in good sized chunks

● Do not do metadata calls unless they are necessary,
access blockdata directly

● Save data in good formats with plenty of metadata

slide 22 of 33

Advanced Lustre
● By default striping is turned off

● “lfs getstripe <dir>” shows striping

● “lfs setstripe c N <dir>” stripe over N targets, -1 means all targets

● “lfs setstripe d <dir>” revert to default

● Use with care. Useful for HUGE files (>100GB) or parallel I/O from
multiple compute nodes (MPI-I/O).

● Real numbers from single client (16 MB IO blocksize for 17 GB):

Striping File size Stream Mb/s

Off (1) 17 GB 214

2 17 GB 393

4 17 GB 557

max 17 GB 508

max 11 MB 55

max 200 KB 10

slide 23 of 33

Workflow suggestion

Data
/work

Storage

Runtime

Temp data
/localWork with temp data

Copy input to disk

Input
/work

Output
/work

Program folder
/home /data

(symlink)

Work in node

Copy output to
network file system

slide 24 of 33

Do's and Don'ts

slide 25 of 33

Do's and don'ts: lots of small files

Lots of small files (+10k, <1MB)
● Well, bad starting point already in general. Though,

sometimes no way to improve (e.g. legacy code)
– /ramdisk or /local: Best place for these

– Lustre: Not the best place. With many users local disk
provides more IOPS and Stream in general

– NFS (Home): Very Bad idea, do not run calculation from
Home

● The very best approach: modify you code. Large
file(s) instead of many small (e.g. HDF5). Or even
no-files-at-all. Sometimes IO due to unnecessary
checkpointing.

slide 26 of 33

Do's and don'ts: inefficient ls

“ls” vs “ls -la”
● ls in a directory with 1000 files

– Simple ls is only a few IOPS

● ls la in a directory with 1000 files
– Local fs: 1000+ IOPS (stat() each file!)
– NFS: a bit more overhead
– Lustre (striping off) 2000 IOPS (+rpcs)
– Lustre (striping on) 31000 IOPS! (+rpcs)

=> Whole Lustre stuck for a while for everyone

● Use “ls la” and variant (ls color) ONLY
when needed

slide 27 of 33

Do's and don'ts: small files

500Gb of data
● Estimated read time in minutes

● Use /local or Lustre (+ maybe striping) for big
files

● Note that above Triton results assume exclusive
access (reality: shared with all other users)!

1M Many small files Single big

/local 170+ 28

/scratch (stripe off) 170+ 28

/scratch (stripe max) BAD IDEA 8

slide 28 of 33

File systems: Do's and Don'ts

Databases (sqlite)
● These can generate a lot of small random

reads (=IOPS)
– /tmp or ramdisk: Best place for these

– Lustre: Not the best place. With many users local
disk provides more IOPS and Stream in general

– NFS (Home): very Bad idea

slide 29 of 33

Best practices

● When unsure what is the best approach
● Check above Do's and Don'ts
● Google?
● Ask your local Triton support person
● Triton issue tracker and ask!
● Ask your supervisor and colleagues
● Trial-and-error (profile it)

slide 30 of 33

Further topics

These are not covered here. Ask/Google if
you want to learn more.
● Using Lustre striping (briefly mentioned)
● HDF5 for small files
● Benchmarking, what is the share of IO of a job
● MPI-IO
● Hadoop

slide 31 of 33

Exercise: File systems
? minutes to proceed, use wiki/google to solve
All scripts are in /scratch/scip/lustre_2017

Simple file system operations
● Use mkdir and ln to create a project like the one in the workflow example.

● Use “strace c” to compare “ls” and “ls l”, and “ls color”. Compare output
with eg. grep/diff. Try listing individual files, and also the directory
/scratch/scip/lustre_2017/manyfiles.

● Copy create_iodata.sh to your data folder and run it to create sample data. Compare
“strace c” of “lfs find $dir” and “find $dir” searches to the directory.

● Copy iotest.sh to your test project folder and submit it with sbatch. What does the
output mean?

● Try to convert the code to use $TMPDIR. Once you're sure it works, change “ls” to “ls
l”. Compare the results.

● Convert the code to use tar/zip/gzip/bzip2. Can you deduce anything from /proc/<pid>/io
output?

slide 33 of 33

Questions or comments
regarding Triton file systems?

References:
●https://wiki.aalto.fi/display/Triton/Data+Storage
●https://wiki.aalto.fi/display/Triton/Compute+node+local+drives
●https://wiki.aalto.fi/display/Triton/Data+storage+on+the+Lustre+file
+system

●https://wiki.aalto.fi/display/Triton/Triton+Quotas

	Slide 1
	Slide 2
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 33

