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Data storage on Triton:
an introduction

● Motivation
● How storage is organized in Triton
● How to optimize IO
● Do's and Don'ts
● Exercises
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Data storage: Motivation

● Program speed isn’t just about processor 
speed: you have to get data to the processor

● Dealing with IO properly prevents performance 
bottlenecks (and this is a major factor in computer design)

● Input/output is a shared resource: one user can 
cause problems to other users

● Your work will be more efficient if you organize 
your work to suit your data
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https://en.wikipedia.org/wiki/Memory_hierarchy
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Storage considerations

You have all of these things to think about:
● Network (shared) vs local (dedicated)
● Shared (with a group) vs personal (only you can access)
● Sequential access vs random access (different performances)

● Few large files vs many small files
● Parallel vs single access
● Backed up vs not
● Rotating hard disk vs solid state drive
● You do need to put your own effort into using storage properly

● Using proper file formats and applications
● Move data to best storage yourself (during calculations)
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How storage is organized in 
Triton
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Data stored in files

What is a file?
● File = metadata + contents (block data)
● Accessing contents: cat a.txt
● Showing some metadata: ls -l a.txt

● Full metadata: stat a.txt, lsattr, getfattr



 

 
slide 9 of 33

Files stored in /scratch

In /scratch, metadata and block data are 
separated:
● Metadata query answered by metadata server
● Block data query, object storage server answers
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File system performance metrics

● Stream I/O and random IOPS

● Stream measures the speed of reading large 
sequential data from system

● IOPS measure random small reads to the system – 
number of metadata/block data accesses

● To measure your own application, profiling or 
internal timers needed

● Rough estimate can be aquired from /proc/<pid>/io 
or by using strace
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Triton network storage
User's Home folder (NFS filesystem)

● /home/$username/ -directory

● Shared for every computational node
● Meant for scripts etc.  Not highly parallel
● Nightly backup, 1GB quota (small)

Work/Scratch (Lustre filesystem) 

● Personal: /scratch/$department/work/$username/

● Group: /scratch/$department/$project/
● Shared for every computational node
● Meant for fast, highly parallel input/output data but inefficient for small random access
● Quota varies per project, 2 PB available.  Default 200GB/person.
● No backups (but a reliable system with RAID)
● Has dedicated tools for fast access, e.g. optimized find function 'lfs find'.

https://wiki.aalto.fi/display/Triton/Data+Storage
https://wiki.aalto.fi/display/Triton/Data+storage+on+the+Lustre
+file+system
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Triton local storage
Storage local to compute node

● /tmp -directory

● Dedicated: Best for calculation time storage
● Copy relevant data after computation, will be deleted after job completes
● $TMPDIR variable defines a temporary directory for the job

Ramdisk for fast IO operations

● Special location, similar to /tmp

● $XDG_RUNTIME_DIR -directory (20GB per user)

● Extremely fast (it’s just RAM) but small and temporary
● Use case: job spends most of its time doing file operations on millions of small 

files.
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Triton special storage
Solid state drive servers

● Currently special server – not user accessible
● Good for random access
● Currently planning future use – if you have use case, let us know

● Department filesystems (/m/$dept/{project,archive})

● Not actually part of Triton – provided by Departments/Aalto
● Not highly parallel
● Not mounted on all the nodes
● Mounted for convenient data transfer only

– You must move computation data to scratch

https://wiki.aalto.fi/display/Triton/Data+Storage
https://wiki.aalto.fi/display/Triton/Data+storage+on+the+Lustre+file+system
https://wiki.aalto.fi/display/Triton/Data+storage+on+the+Lustre+file+system
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File systems: Summary

Location Type Usage Size/quota

/home NFS Home dir 1 Gb

/tmp local Local scratch ~800Gb (varies)

$WRKDIR Lustre Personal work 200GB default

/scratch/$dept/$project/ Lustre Shared work As needed

$XDG_RUNTIME_DIR Ramdisk Local scratch 20GB
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Quotas

● Quotas limit how much space you can use (and how many 
files)

● Check with “quota” command
● Home: 1GB
● Lustre

● Work: 200GB and increased as needed, project quotas as needed
● Quotas and advisory, and are always increased as necessary as 

long as you manage data well
● “‘Disk quota exceeded’ error but I have plenty of space”: a common 

problem.  Caused by limitation of Lustre, see the wiki page.

● https://wiki.aalto.fi/display/Triton/Triton+Quotas   
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How to optimize IO
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File system performance metrics

● Stream I/O and random IOPS

● Stream measures the speed of reading large 
sequential data from system

● IOPS measure random small reads to the system – 
number of metadata/block data accesses

● To measure your own application, profiling or 
internal timers needed

● Rough estimate can be aquired from /proc/<pid>/io 
or by using strace

https://wiki.aalto.fi/display/Triton/Triton+Quotas
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Performance metric examples
● Total numbers

● Per jobs, with 200 concurrent jobs using storage...
Device IOPS Stream

Sata disk (7.2k) 50-100 50 MB/s

SSD disk N/a N/a

Triton NFS 1.5 1.5 MB/s

Triton Lustre 500 150 MB/s

● DON'T run job jobs from HOME! (NFS)

Device IOPS Stream

Sata disk (7.2k) 50-100 50 MB/s

SSD disk 3000-10 000 500 MB/s

Ramdisk 40 000 5000 MB/s

Triton NFS 300 300 MB/s

Triton Lustre 100 000 30000 MB/s



 

 
slide 21 of 33

How to optimize IO/data?

● Know how your program does its data handling,
know which file system your program utilizes for its IO

● Measure your program with profilers e.g. 
strace c e trace=file <program>

● Minimize the number of unnecessary file calls e.g.
log output timestep

● Load data in good sized chunks

● Do not do metadata calls unless they are necessary,
access blockdata directly

● Save data in good formats with plenty of metadata
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Advanced Lustre
● By default striping is turned off

● “lfs getstripe <dir>” shows striping

● “lfs setstripe c N <dir>” stripe over N targets, -1 means all targets

● “lfs setstripe d <dir>” revert to default

● Use with care. Useful for HUGE files (>100GB) or parallel I/O from 
multiple compute nodes (MPI-I/O).

● Real numbers from single client (16 MB IO blocksize for 17 GB):

Striping File size Stream Mb/s

Off (1) 17 GB 214

2 17 GB 393

4 17 GB 557

max 17 GB 508

max 11 MB 55

max 200 KB 10
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Workflow suggestion

Data
/work

Storage

Runtime

Temp data
/localWork with temp data

Copy input to disk

Input
/work

Output
/work

Program folder
/home /data

(symlink)

Work in node

Copy output to 
network file system
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Do's and Don'ts
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Do's and don'ts: lots of small files

Lots of small files (+10k, <1MB)
● Well, bad starting point already in general. Though, 

sometimes no way to improve (e.g. legacy code)
– /ramdisk or /local: Best place for these

– Lustre: Not the best place. With many users local disk 
provides more IOPS and Stream in general

– NFS (Home): Very Bad idea, do not run calculation from 
Home

● The very best approach: modify you code. Large 
file(s) instead of many small (e.g. HDF5). Or even 
no-files-at-all. Sometimes IO due to unnecessary 
checkpointing.
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Do's and don'ts: inefficient ls

“ls” vs “ls -la”
● ls in a directory with 1000 files

– Simple ls is only a few IOPS

● ls la in a directory with 1000 files
– Local fs: 1000+ IOPS (stat() each file!)
– NFS: a bit more overhead
– Lustre (striping off) 2000 IOPS (+rpcs)
– Lustre (striping on) 31000 IOPS! (+rpcs)

=> Whole Lustre stuck for a while for everyone

● Use “ls la” and variant (ls color) ONLY 
when needed
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Do's and don'ts: small files 

500Gb of data
● Estimated read time in minutes

● Use /local or Lustre (+ maybe striping) for big 
files

● Note that above Triton results assume exclusive 
access (reality: shared with all other users)!

1M Many small files Single big

/local 170+ 28

/scratch (stripe off) 170+ 28

/scratch (stripe max) BAD IDEA 8
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File systems: Do's and Don'ts

Databases (sqlite)
● These can generate a lot of small random 

reads (=IOPS)
– /tmp or ramdisk: Best place for these

– Lustre: Not the best place. With many users local 
disk provides more IOPS and Stream in general

– NFS (Home): very Bad idea
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Best practices

● When unsure what is the best approach
● Check above Do's and Don'ts
● Google?
● Ask your local Triton support person
● Triton issue tracker and ask!
● Ask your supervisor and colleagues
● Trial-and-error (profile it)
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Further topics

These are not covered here. Ask/Google if 
you want to learn more.
● Using Lustre striping (briefly mentioned)
● HDF5 for small files
● Benchmarking, what is the share of IO of a job
● MPI-IO
● Hadoop
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Exercise: File systems
? minutes to proceed, use wiki/google to solve
All scripts are in /scratch/scip/lustre_2017

Simple file system operations
● Use mkdir and ln to create a project like the one in the workflow example.

● Use “strace c” to compare “ls” and “ls l”, and “ls color”. Compare output 
with eg. grep/diff. Try listing individual files, and also the directory 
/scratch/scip/lustre_2017/manyfiles.

● Copy create_iodata.sh to your data folder and run it to create sample data. Compare 
“strace c” of “lfs find $dir” and “find $dir” searches to the directory.

● Copy iotest.sh to your test project folder and submit it with sbatch. What does the 
output mean?

● Try to convert the code to use $TMPDIR. Once you're sure it works, change “ls” to “ls 
l”. Compare the results.

● Convert the code to use tar/zip/gzip/bzip2. Can you deduce anything from /proc/<pid>/io 
output?
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Questions or comments
regarding Triton file systems?

References:
●https://wiki.aalto.fi/display/Triton/Data+Storage
●https://wiki.aalto.fi/display/Triton/Compute+node+local+drives
●https://wiki.aalto.fi/display/Triton/Data+storage+on+the+Lustre+file
+system

●https://wiki.aalto.fi/display/Triton/Triton+Quotas
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