

slide 1 of 15

Triton software deployment &
modules environment

slide 2 of 15

Software: Basic concepts of
software deployment

● Modern software in Linux systems is typically not self-contained

● They depend on libraries and/or other software to work

● Usually programs are compiled dynamically against these
dependencies

→ This means that dependencies are not included in the
resulting binaries, but they are loaded when the program

 runs

● The end result is a software stack where end product requires
many layers of other software

● To provide these full software stacks, Triton uses environment
modules

slide 3 of 15

Software: Example software stack

Compiler & Numerical Libraries

ICC

OpenMPI IntelMKL

Additional libraries

bzip2 zlib libreadline ncurses Tk GMP

High-level software

Python

setuptoolspip

Extra modules for software

mpi4py numpy

slide 4 of 15

Software: Environment variables

● In Linux systems environment variables define other paths
than system paths

● Most important for you:

a) $PATH is the command lookup path

b) $LD_LIBRARY_PATH is the runtime library lookup path

● Environment modules set these (and other variables)

That is all they do!

slide 5 of 15

Modules: Basics

● Specialized software in Triton is installed by admins and
organized as environment modules

● When you load a module, the environment variables defined by
the module will be loaded to the current shell

● This enables different versions of software to be installed
at a same time for all users

● We admins will install widely used software as modules

● CSC provides their set of environment modules via their CVMFS
(CernVM File System) server

● In future we might use specialized containers to allow higher
software stacks

slide 6 of 15

Modules: Commands
● module avail [name/word/reg exp] and

module spider [name/word/reg exp] :
Show/search from available module(s)
(output between commands differ a bit)

● module show name[/version] :
Show what a module does

● module load name[/version] :
Load a module

● module unload name[/version] :
Unload a module

● module list [name] :
Show loaded module(s)

● module swap old[/version] new[/version] :
Swap loaded module(s)

● module purge :
Unload all modules

Just run 'module' for more
information

● module save [name] :
Save a module collection

● module savelist :
List stored collections

● module restore [name] :
Load a module collection

slide 7 of 15

Modules: Organization

● Many of the modules are organized by toolchains

● Toolchains are the lowest layer of
compilers/numerical libraries that are used as a
starting point for higher level software

● Advanced software is compiled against
a specific toolchain e.g. Python/2.7.13-iomkl-triton-
2017a is compiled against the iomkl-toolchain

● Toolchains with ‘triton’ in them are maintained by us
and updated to newest version twice a year (2016b,
2017a, 2017b, …)

slide 8 of 15

Modules: Example software stack

Toolchain - iomkl

ICC

OpenMPI IntelMKL

Additional libraries compiled with toolchain

bzip2 zlib libreadline ncurses Tk GMP

High-level software installed as module

Python

setuptoolspip

Extra packages installed within high-level software

mpi4py numpy

slide 9 of 15

Modules: List of toolchains

● Naming convention → compiler, mpi, blas, lapack, fftw, cuda
Examples:

Toolchain Compiler MPI BLAS LAPACK FFTW CUDA

gompi GCC OpenMPI - - - -

goolf GCC OpenMPI OpenBLAS LAPACK FFTW -

gmvolf GCC MVAPICH OpenBLAS LAPACK FFTW -

goolfc GCC OpenMPI OpenBLAS LAPACK FFTW CUDA

ioolf icc OpenMPI OpenBLAS LAPACK FFTW -

iomkl icc OpenMPI Intel MLK Intel MLK Intel MLK -

slide 10 of 15

Modules: Other software

● matlab: module load matlab
● R: module load R
● GROMACS: module load GROMACS
● ...

slide 11 of 15

Modules: Python toolchain or
Anaconda

● Toolchain-type Python versions are mainly used for

a) Multiprocess Python with MPI

b) GPU requiring code
● If you do not use either, use Anaconda:

module load anaconda2 or
module load anaconda3

slide 12 of 15

Modules: Important notes

● Do not mix and match different toolchains
→ Library paths will most likely go awry

● If you have loaded modules when you build/install software,
remember to load the same modules when you run the software
(also in Slurm jobs)

● If you just load a module without specifying the version,
remember that the default might have change since your last use

● Once you got a good collection of modules, save them into
collections
→ Collections are faster to load and easier to maintain

slide 13 of 15

Modules: Is this the correct
program?

● When in doubt about which program/library you're about to use:

→ Check your modules with 'module list'

→ Command 'env' shows the current environment

→ Command 'which' accompanied with a program name
shows the full path to the command ($PATH lookup)

→ Command 'ldd' accompanied with a program/library name
shows which dynamic libraries the program needs and
where the dynamic loader has found them
($LD_LIBRARY_PATH lookup)

slide 14 of 15

Questions or comments
regarding software in Triton?

slide 15 of 15

Modules & Software: Exercises

Start all examples from empty (module purge) state.

1. Load one of the toolchain modules.
List what modules it loaded.

2. Save your environment variables to a file with 'env > filename'.
Swap a module, save variables to a new file and use 'diff' to check for
changes.

3. Load a module with multiple dependencies e.g. R/3.3.2-iomkl-triton-2017a-
libX11-1.6.3. Save the loaded modules as a collection.

4. Use 'time module load <module>'/'time module restore <collection>' to
compare load times. Did you see a speedup?

5. Load GROMACS. Use 'which' to find where command 'gmx' is and then use
'ldd' to find out what libraries it uses. Load incompatible toolchain e.g. goolf.
Check ldd output again.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

