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Triton software deployment &
modules environment
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Software: Basic concepts of
software deployment

● Modern software in Linux systems is typically not self-contained

● They depend on libraries and/or other software to work

● Usually programs are compiled dynamically against these 
dependencies

→ This means that dependencies are not included in the
resulting binaries, but they are loaded when the program

 runs

● The end result is a software stack where end product requires 
many layers of other software

● To provide these full software stacks, Triton uses environment 
modules 
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Software: Example software stack

 

Compiler & Numerical Libraries

ICC

OpenMPI IntelMKL

Additional libraries

bzip2 zlib libreadline ncurses Tk GMP

High-level software

Python

setuptoolspip

Extra modules for software

mpi4py numpy
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Software: Environment variables

● In Linux systems environment variables define other paths
than system paths

● Most important for you:

a) $PATH is the command lookup path

b) $LD_LIBRARY_PATH is the runtime library lookup path

● Environment modules set these (and other variables)

That is all they do!
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Modules: Basics

● Specialized software in Triton is installed by admins and 
organized as environment modules

● When you load a module, the environment variables defined by 
the module will be loaded to the current shell

● This enables different versions of software to be installed
at a same time for all users

● We admins will install widely used software as modules

● CSC provides their set of environment modules via their CVMFS 
(CernVM File System) server

● In future we might use specialized containers to allow higher 
software stacks
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Modules: Commands
● module avail [name/word/reg exp] and

module spider [name/word/reg exp] :
Show/search from available module(s)
(output between commands differ a bit) 

● module show name[/version] :
Show what a module does

● module load name[/version] :
Load a module

● module unload name[/version]  :
Unload a module

● module list [name] :
Show loaded module(s)

● module swap old[/version] new[/version] :
Swap loaded module(s)

● module purge :
Unload all modules

Just run 'module' for more 
information

● module save [name] :
Save a module collection

● module savelist :
List stored collections

● module restore [name] :
Load a module collection
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Modules: Organization

● Many of the modules are organized by toolchains

● Toolchains are the lowest layer of 
compilers/numerical libraries that are used as a 
starting point for higher level software

● Advanced software is compiled against 
a specific toolchain e.g. Python/2.7.13-iomkl-triton-
2017a is compiled against the iomkl-toolchain

● Toolchains with ‘triton’ in them are maintained by us 
and updated to newest version twice a year (2016b, 
2017a, 2017b, … )
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Modules: Example software stack

 

Toolchain - iomkl

ICC

OpenMPI IntelMKL

Additional libraries compiled with toolchain

bzip2 zlib libreadline ncurses Tk GMP

High-level software installed as module

Python

setuptoolspip

Extra packages installed within high-level software

mpi4py numpy
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Modules: List of toolchains

● Naming convention → compiler, mpi, blas, lapack, fftw, cuda
Examples:

Toolchain Compiler MPI BLAS LAPACK FFTW CUDA

gompi GCC OpenMPI - - - -

goolf GCC OpenMPI OpenBLAS LAPACK FFTW -

gmvolf GCC MVAPICH OpenBLAS LAPACK FFTW -

goolfc GCC OpenMPI OpenBLAS LAPACK FFTW CUDA

ioolf icc OpenMPI OpenBLAS LAPACK FFTW -

iomkl icc OpenMPI Intel MLK Intel MLK Intel MLK -
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Modules: Other software

● matlab: module load matlab
● R: module load R
● GROMACS: module load GROMACS
● ...
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Modules: Python toolchain or
Anaconda

● Toolchain-type Python versions are mainly used for

a) Multiprocess Python with MPI

b) GPU requiring code 
● If you do not use either, use Anaconda:

module load anaconda2 or
module load anaconda3
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Modules: Important notes

● Do not mix and match different toolchains
→ Library paths will most likely go awry

● If you have loaded modules when you build/install software, 
remember to load the same modules when you run the software 
(also in Slurm jobs)

● If you just load a module without specifying the version, 
remember that the default might have change since your last use

● Once you got a good collection of modules, save them into 
collections
→ Collections are faster to load and easier to maintain
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Modules: Is this the correct
program?

● When in doubt about which program/library you're about to use:

→ Check your modules with 'module list'

→ Command 'env' shows the current environment

→ Command 'which' accompanied with a program name
shows the full path to the command ($PATH lookup)

→ Command 'ldd' accompanied with a program/library name
shows which dynamic libraries the program needs and
where the dynamic loader has found them
($LD_LIBRARY_PATH lookup)
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Questions or comments
regarding software in Triton?
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Modules & Software: Exercises

Start all examples from empty (module purge) state.

1. Load one of the toolchain modules.
List what modules it loaded.

2. Save your environment variables to a file with 'env > filename'.
Swap a module, save variables to a new file and use 'diff' to check for 
changes.

3. Load a module with multiple dependencies e.g. R/3.3.2-iomkl-triton-2017a-
libX11-1.6.3. Save the loaded modules as a collection.

4. Use 'time module load <module>'/'time module restore <collection>' to 
compare load times. Did you see a speedup?

5. Load GROMACS. Use 'which' to find where command 'gmx' is and then use 
'ldd' to find out what libraries it uses. Load incompatible toolchain e.g. goolf. 
Check ldd output again.
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